>
µù¤T:
¸ê®Æ§¡¨Ó¦Û¡m¦Û¥Ñ¦Ê¬ì¥þ®Ñ¡n
¦´ÁµLªºÆ[ÂI
³Ì¦Ãö©óµLªº°O¸ü¥X²{¦b¦L«×ªºC¬X§pªû¡]¤½¤¸«e1200¡Ð900¡^¡C®Ñ¤¤»¡¡G¡u¦pªG§A±qµL¤¤²¾¨«©Î²K¥[¤@³¡¤À¡A³Ñ¤UªºÁÙ¬OµL¡C¡v
¦L«×¯Ï¨º±Ðªº¸g®Ñ¡mSurya Prajnapti¡n(c. 400 BC) §â¼Æ¤À§@¤TÃþ¡G¡u¥ipªº¡v¡B¡u¤£¥ipªº¡v¤Î¡uµL¡v¡C¨C¤@Ãþ¦A²Ó¤À§@¤T§Ç¤À¡G
¥ipªº:¤pªº¡B¤¤ªº»P¤jªº¡C
¤£¥ipªº: ±µªñ¤£¥ipªº¡B¯u¥¿¤£¥ipªº»PpµL¥ipªº¡C
µL¡G±µªñµL¡B¯u¥¿µL»PµL½aµLºÉ¡C
³o¬O¦b¤HÃþ°O¸ü¤W²Ä¤@¦¸¥X²{µL¤]¥i¥H¤ÀÃþ³o¤@Ó©ÀÀY¡C
¤åÃÀ´_¿³®É¥N¦Üªñ¥N
¦÷§Q²¤³Ì¥ýµo²{¤@Ó¶°¦X¸ò¥¦¦Û¤vªº¥¿¾A¤l¶°¥i¥H¦³¬Û¦Pªº¤j¤p¡C ¥L¥Î¤W¤@¤@¹ïÀ³ªº·§©À»¡©ú¦ÛµM¼Æ¶°{1, 2, 3, 4 ...}¸ò¤l¶°¥¤è¼Æ¶°{1,4,9,16,...}¤@¼Ë¦h¡C´N¬O 1¡÷1,2¡÷4,3¡÷9,4¡÷16,.....
¤@¤@¹ïÀ³¥¿¬O¥Î©ó¬ã¨sµL¥²nªº¤âªk¡C
©v±Ð¤¤ªºµL½a
¦ò±Ð¡GµL¶q¹Ø¡AµL¶q¥ú¡AµL¶qªü¹¬¬é§T¡AµL¶q»õ§T¡A¥|µL¶q¤ß¡X¡X·O¡B´d¡B³ß¡B±Ë¡AµL¶q²³¥Í¡AªkªùµL¶q»}Ä@¾Ç¡AW®üµLÃä ¹D±Ð¡GµL¶q¤Ñ´L¡BµL¶q«×¤H¡B¥\¼wµL¶q
In accordance with the traditional view of Aristotle, the Hellenistic Greeks generally preferred to distinguish the potential infinity from the actual infinite; for example, instead of saying that there are an infinity of primes, Euclid prefers instead to say that there are more prime numbers than contained in any given collection of prime numbers (Elements, Book IX, Proposition 20).
However, recent readings of the Archimedes Palimpsest have hinted that at least Archimedes had an intuition about actual infinite quantities.
|
|